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Various fluoren-9-one derivatives were prepared efficiently by a one-pot reaction involving sequential
Suzuki coupling of 2-bromophenyl boronic acid with 2-bromocarboxaldehyde followed by intramolecu-
lar arylpalladium addition to aldehyde.
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The importance of fluoren-9-one, found in many biologically ac-
tive products, has been emphasized in organic chemistry. It con-
sists of essential structural backbone of various pharmaceuticals.1

Also number of natural products have been found containing fluo-
ren-9-one as the core structure. Examples of such natural products
include dengibsin, dengibsinin, dendroflorin, and kinobscurinone
showing a range of biological activities.2 Utility of fluoren-9-one
derivatives as photosensitizers in organic photoconductor devices
and their electrical and optical properties are also important.3

Therefore methodologies for the preparation of fluoren-9-one moi-
ety have attracted much attention from both academia and
industry.

Several methods for the preparation of fluoren-9-ones have
been developed among which the useful syntheses include Fri-
edel–Crafts ring closure of biarylcarboxylic acid and its deriva-
tives,4 remote aromatic metalation,5 oxidation of fluorenes,6

intramolecular Diels–Alder reaction of conjugated enyne or diaryl-
acetylene systems,7 ring contraction,8 etc.

Over the past decades Pd-catalyzed cross-coupling reactions
have become powerful tools for C–C bond formation to synthesize
a wide variety of organic compounds ranging from small molecules
to macromolecules. There are some synthetic protocols available
involving Pd-catalyzed coupling reactions leading to fluoren-9-
one moiety such as Pd-catalyzed cyclization of o-iodobenzophe-
none,9 cyclocarbonylation of o-halobiaryls,10 arylation followed
by oxidative Heck cyclization of aromatic aldoxime ether11 have
ll rights reserved.
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been reported. Larock and co-workers have synthesized fluoren-
9-one starting from 2-haloarenecarboxaldehyde via Pd-catalyzed
annulation of arynes.12 Our continued efforts in palladium-cata-
lyzed cyclization reactions on substrates derived from b-bromovi-
nyl aldehydes to develop the carbocycles and heterocycles13 have
driven us to develop a facile and efficient Pd-catalyzed synthesis
of functionalized fluoren-9-one derivatives starting from various
2-bromocarboxaldehydes along with 2-bromophenyl boronic acid
with two distinct sequential steps, Suzuki coupling followed by
arylpalladium addition to aldehyde, in one-pot.

We initially focused on the reaction between commercially
available 2-bromobenzaldehyde (1a) and 2-bromophenyl boronic
acid (2) for the preparation of fluoren-9-one (4a). Toward this we
carried out Suzuki coupling14 between 1a and 2 in presence of
Pd(PPh3)4 as catalyst, Et3N as base in DMF at 90 �C for 2 h where
the 20-bromobiphenyl-2-carbaldehyde (3) was obtained as the only
isolable product in good yield. It was expected to undergo the
intramolecular arylpalladation12,15 to aldehyde on subjecting to
Pd(0)-catalytic condition to construct the fluoren-9-one (4a). Thus
when this intermediate 3 was heated at somewhat higher temper-
ature (120 �C) in presence of Pd(OAc)2 as catalyst, Na2CO3 as base,
PPh3 as ligand in DMF for 13–14 h, it gave fluoren-9-one (4a)
accordingly (Scheme 1). We then envisioned that these two steps
can be carried out sequentially using one catalytic system in one-
pot without isolating the intermediate.

With this idea in mind, we carried out a survey of Pd-catalysts,
bases, solvents, and temperature to get the optimal condition for
the preparation of fluoren-9-one in one-pot (summarized in
Table 1). Initially we performed the reaction in presence of Pd(PPh3)4
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Scheme 1. Synthesis of fluoren-9-one.

Table 1
Optimization studiesa

Br
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+

(HO)2B
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O

catalyst, base

ligand, solvent
CHO

Br
+

1a 32 4a

Entry Catalyst Ligand Base Solvent Temp (�C) Yield%c

3 4a

1 Pd(PPh3)4 — Et3N DMF 120 79 Tr
2 Pd(PPh3)4 — NaOAc DMF 120 78 Tr
3 Pd(PPh3)4 — Na2CO3 DMA 130 73 <10
4 Pd(OAc)2 PPh3 Na2CO3 DMF 100 67 15
5 Pd(OAc)2 PPh3 Na2CO3 DMF 120 10 65
6 Pd(OAc)2 PPh3 Cs2CO3 DMF 120 10 68
7 Pd(OAc)2 PPh3 NaOAc DMF 120 — 80
8 Pd(OAc)2 PPh3 NaOAc Tolueneb 110 50 20
9 Pd(OAc)2 PPh3 Et3N DMF 120 50 30

10 Pd(PPh3)2Cl2 — NaOAc DMF 120 <5 75

a Reagents and conditions: o-bromobenzaldehyde (1 mmol), 2-bromophenyl boronic acid (1.2 mmol), catalyst (10 mol %), base (4 mmol),
ligand (0.5 mmol), and solvent (6 mL) at the indicated temperature for 15–16 h under N2.

b Reaction was run in a two-necked round-bottomed flask with a reflux condenser.
c Yields refer to the isolated yield after purification. Tr = traces.
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as catalyst, Et3N as the base in dry DMF under N2 at 120 �C for 16 h
where the intermediate 20-bromobiphenyl-2-carbaldehyde (3) was
obtained in 79% yield accompanied by the traces amount of desired
fluoren-9-one (4a) (Table 1, entry 1). Changing the bases and sol-
vents with Pd(PPh3)4 did not effect this transformation appreciably
(entries 2, 3). On carrying out the reaction in presence Pd(OAc)2,
PPh3, Na2CO3 in DMF at 120 �C, 4a was formed in 65% yield at
120 �C (entry 5). Using NaOAc as a base improved the yield of 4a
to 80% (entry 7). However using toluene as a solvent gave poor yield
(20%) (entry 8). Therefore after a thorough screening with different
combination of catalyst, base, solvent, and temperature, the ‘opti-
mal’ condition was found when the substrates 1a (1 mmol) and 2
O
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Scheme 2. Preparation of o-bromo
(1.2 mmol) were heated in presence of Pd(OAc)2 (10 mol %), PPh3

(0.5 mmol), NaOAc (4 mmol) in DMF (6 mL) at 120 �C for 15–16 h
under N2.16 Performing the reaction with Pd(OAc)2 less than
10 mol % under the same reaction condition leads to decrease in
yield of fluoren-9-one. With 5 mol % Pd(OAc)2 only 30% fluoren-9-
one (4a) along with 43% intermediate (3) was isolated. However in
none of the cases the biphenyl formed due to oxidative homocou-
pling product from boronic acid was found.

With the optimum reaction condition we successfully extended
our methodology to other substituted 2-bromocarboxaldehydes
(1a–1l). Among them o-bromonaphthalenecarboxaldehydes
(1e–1l) were synthesized from their corresponding tetralone
CHO DDQ
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Br
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Table 2
Synthesis of fluoren-9-one derivativesa

Br

CHO

+

Br

(HO)2B Pd(OAc)2, NaOAc

PPh3, DMF, 120-130 oC,
16-28 h

O

(1a-1l) 2 (4a-4l)

Entry Substrate Product Yield%b

1

CHO

Br
1a

O

4a

80

2

CHO

BrMe
1b

O

Me 4b

79

3

CHO

Br
1c

F O

4c

F 86

4

CHO

Br
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MeO O

4d

MeO 76

5

1e

CHO
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O

4e

67

6
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MeO

68

7
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Br

OMe
O

4g

MeO
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O
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MeO
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10
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O
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Table 2 (continued)

Entry Substrate Product Yield%b

11

CHO

Br

OMe 1k

O

4k

OMe

51c

12

CHO

Br

1l

Me O

4l

Me
54c

a Reagent and conditions: All the reactions were carried out under the following conditions unless otherwise specified: 2-
bromocarboxaldehyde (1 mmol), 2-bromophenyl boronic acid (1.2 mmol), Pd(OAc)2 (10 mol %), PPh3 (0.5 mmol), NaOAc
(4 mmol), DMF (6 mL), at 120 �C for 15–16 h.

b Yields refer to the isolated yield after purification.
c These reactions were run at 130 �C and needed 28 h to reach completion.
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derivatives in an excellent yield using Vilsmeier–Haack type reac-
tion17 followed by aromatization with 2,3-dichloro-5,6-dic-
yanobenzoquinone (DDQ) (Scheme 2).

Several fluoren-9-one derivatives (4a–4l) were successfully pre-
pared from the reaction of various 2-bromoarenecarboxaldehydes
(1a–1l) with 2-bromophenyl boronic acid (2) under optimized
reaction condition (Table 2). With the substituted o-bromobenzal-
dehydes (1a–1d) and 2-bromonaphthalen-1-carboxaldehydes (1e–
1g), fluoren-9-one derivatives were isolated in moderate to good
yield. However the 1-bromonaphthalen-2-carboxaldehydes (1h–
1l) gave comparatively lower yield which may be due to the loca-
tion of bromine at the sterically hindered 1-position of naphtha-
lene and for this reason they required rather higher temperature
(130 �C) and prolonged reaction time (28 h) for the completion of
reaction.

A number of cyclic b-bromovinyl aldehydes (prepared from
Vilsmeier–Haack17 type reaction from their cyclic-keto derivatives)
were also subjected to the similar reaction condition where only 2-
bromocyclohex-1-enecarbaldehyde derivatives (1m–1n) gave flu-
oren-9-ones (4a, 4m) instead of 1,2,3,4-tetrahydro-fluoren-9-ones
which underwent Pd(0)-catalyzed dehydrogenation in the reaction
medium (Scheme 3).

In order to investigate the step at which dehydrogenation oc-
curred, we carried out the reaction of 2-bromocyclohex-1-enecarb-
aldehyde (1m) with 2-bromophenyl boronic acid (2) using the
1m R"' = H

1n R"' = Me

O
CHO

Br

'"R
+

Br

(HO)2B

Pd(OAc)2, PPh3, 

NaOAc, DMF, 120 oC
16 h

'"R

4a R"' = H

4m R"' = Me

2

Scheme 3. Synthesis of fluoren-9-one derivatives from 2-bromocyclohex-1-enecar-
baldehydes.
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Scheme 4. Isolation of intermediate 2-(2-bromophenyl)-cyclohex-1-enecarbalde-
hyde.
experimental condition stated in Table 1, entry 2 (Scheme 4) where
we isolated 2-(2-bromophenyl)-cyclohex-1-enecarbaldehyde (5)
which confirmed that the dehydrogenation occurred during the
cyclization step. With 5, 7, and 8-membered cyclic b-bromovinylal-
dehydes, after Suzuki coupling the formed intermediate underwent
a complete decomposition under this reaction condition.

In conclusion we have successfully developed a simple and
effective one-pot synthesis of fluoren-9-one derivatives which in-
volves the Suzuki coupling of 2-bromophenyl boronic acid with
various 2-bromocarboxaldehydes followed by arylpalladium addi-
tion to aldehyde. To our knowledge this method is the first report
for the synthesis of fluoren-9-one using one-pot Suzuki coupling
followed by arylpalladation to aldehyde. It provides an efficient
synthesis of various fluoren-9-one and condensed fluoren-9-one
derivatives in moderate to good yield from the readily available
starting materials.
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